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Abstract 

The existence of a critical mass ratio for cylinders undergoing 
vortex-induced vibration (VIV) in a translational system has been 
well established. Below this critical point, the reduced velocity at 
VIV lock-out tends to infinity. It has been surmised that a 
corresponding mass moment of inertia ratio must exist for a 
pivoted cylinder arrangement. To the authors’ knowledge there 
has been no investigation published substantiating this premise. 
The aim of the present investigation then was to examine the 
critical point for cylinders in a rotational system. The approach 
adopted involved measuring the VIV amplitude response of a 
positively buoyant, and hence rising, pivoted cylinder at very 
high reduced velocity. High reduced velocity was attained by 
establishing a very low system natural frequency through the 
omission of external restoring forces. The key finding of this 
study is the presence of a critical point with a value similar to that 
of the critical mass ratio in translational systems. This critical 
point does not however appear to be governed by the mass 
moment of inertia ratio but rather by the force moment ratio. 

 

Introduction  

Fluid flow past a circular cylindrical object generates vorticity 
due to the shear present in the boundary layer. This vorticity in 
the flow field coalesces into regions of concentrated vorticity, 
known as vortices, on either side of the cylinder. Flow above a 
threshold Reynolds number allows perturbations in the flow 
upstream to cause one of the vortices to grow larger. This vortex, 
with higher flow velocities and accompanying lower pressures, 
draws the smaller vortex from the opposing side across the wake 
centreline. The opposite vorticity from this smaller vortex severs 
the vorticity supply of the larger vortex, allowing it to convect 
downstream [15]. This process is repeated in the reverse sense, 
leading to alternating vortex shedding from the cylinder. 
 
When the cylinder is elastically restrained and natural 
frequencies are introduced, a fluid-elastic instability known as 
vortex-induced vibration (VIV) results. The time-varying non-
uniform pressure distribution around the cylinder resulting from 
the vortex shedding causes structural vibrations both inline and 
transverse to the flow. Near the natural frequency of the 
structure, the vortex-shedding frequency synchronises with the 
natural frequency and the vibration frequency. One of the 
primary mechanisms responsible for this synchronisation is the 
change in hydrodynamic mass, as demonstrated in the 
experiments of Vikestad [16]. The range of reduced velocity over 
which this synchronisation occurs is known as the lock-in range. 
Mostly, the ensuing vibrations are undesirable, resulting in 
increased fatigue loading and component design complexity to 
accommodate these motions. The transverse vibrations also result 
in higher dynamic relative to static drag coefficients. 
 

With decreasing mass ratio, an increase in the amplitude response 
is generally evident [13]. Also, the smaller the mass ratio, the 
larger the relative influence of the hydrodynamic mass on the 
vibration response of the structure. 
 
Various definitions for the mass ratio are widely employed. In 
this work, the mass ratio is defined as the ratio of the oscillating 
structural mass, m, to the displaced fluid mass, md, as 
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The structural mass, m, includes any enclosed fluid, but excludes 
the hydrodynamic mass. Note that the mass ratio is equivalent to 
the magnitude of the ratio of the weight, W, and buoyancy, B, 
forces since  
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The mass ratio parameter influences both the amplitude and 
frequency response of the cylinder. With higher mass ratios (e.g. 
a cylinder vibrating in air, with a mass ratio O(100)), changes in 
added mass are relatively insignificant due to the low density of 
the fluid. The natural frequency then remains relatively 
unchanged throughout the lock-in range. When the fluid medium 
under consideration is much denser (e.g. a cylinder vibrating in 
water), distinct changes in the natural frequency are observed. 
The increasing natural frequency observed with increasing 
reduced velocity is directly attributable to the decreasing added 
mass throughout the lock-in range [14, 16]. An overview of the 
characteristics of low mass damping VIV is given in the review 
paper by Gabbai and Benaroya [2]. 
 
Since the hydrodynamic mass variation is largely responsible for 
synchronisation of the shedding and vibration frequencies, 
typically much wider lock-in regions are experienced at low mass 
ratio[13, 16].  The limit of this trend is found at the critical mass 
ratio of around 0.54 [5], below which there exists no de-
coherence region and VIV occurs at all velocities above the 
initial lock-in. In fact, at mass ratios below the critical point the 
lower response branch can never be reached.  
 
The initial discovery of the critical mass ratio resulted from the 
examination of elastically constrained cylinder experimental data 
[3]. Subsequent transverse amplitude tests on translational 
cylindrical systems where restoring forces have been removed 
(i.e. with the reduced velocity, Ur) have been conducted with 
results as illustrated in figure 1 [4]. At Ur resonance is seen 
below the critical mass ratio and forced vibrations above. The 
development of understanding of the critical mass ratio for a 
single degree of freedom cylindrical system is chronicled well in 
the review by Williamson and Govardhan [18] and in the 
publications by Govardhan and Williamson [4, 5] in which a 
critical mass ratio 0.542 ± 0.01 is claimed.  



 

Figure 1. Experimentally determined value of the critical mass ratio [4]. 

 
The low Reynolds number study by Ryan, Thompson and 
Hourigan [11] revealed a Reynolds number dependency of the 
critical mass ratio. This was supported by the study by Morse and 
Williamson [9] which showed an increase in critical mass ratio 
from 0.36 to 0.54 over the Reynolds number range of 4000 to 
30000. 
 
The investigation by Horowitz and Williamson [6] where the 
VIV motions of a rising and falling cylinder were examined 
yielded a critical mass ratio of 0.54. This arrangement, despite 
allowing the cylinder multiple degrees of freedom, produced 
results in close agreement with previous experiments. A system 
free to vibrate inline and transverse to the flow has the potential 
at low mass ratio to display a super-upper response branch [10, 
12] rather than the upper response branch observed in transverse 
only experiments. By extrapolation of their data, the two degree 
of freedom system experiments by Jauvtis and Williamson [7] 
revealed a critical mass ratio value of 0.522. 
 
Very few prior investigations have examined the critical point for 
a pivoted cylinder. Those that have are generally of limited use in 
elucidating the critical point for a rotational system. The studies 
by Leong and Wei [8] and Voorhees, Dong, Atsavapranee, 
Benaroya and Wei [17] for example attempt to apply the concept 
of the mass ratio to a rotational system. Insufficient information 
is provided in these papers to ascertain the mass moment of 
inertia of the cases covered. The former study presents only 
partial response curves for limited mass ratios and the latter 
provides experimental results above the critical point. 
 
In the pivoted cylinder study by Flemming and Williamson [1] 
the mass moment of inertia ratio is introduced as the governing 
parameter. The mass moment of inertia ratio, I*, defined as the 
ratio of the mass moment of inertia of the structural components, 
I, to that of the displaced fluid, Id, is  
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where r and rd respectively refer to the distance of the structural 
and displaced fluid mass elements (i.e. dm and dmd) from the 
point of rotation. 
 
Adopting the mass moment of inertia ratio is the logical choice as 
it is the rotational analogy of the mass ratio in a translational 
system. In the investigation by Flemming and Williamson [1], 
three mass moment of inertia ratio cases are presented, ranging 
from I*=7.69 to I*=1.03. These experiments are performed well 
above the critical point value (I*cr≈0.5) surmised in the same 
paper and are therefore of limited value in illuminating the 
critical point for a pivoted cylinder. 

 
The aim of the present study was therefore to examine the 
dynamics of a pivoted cylinder to ascertain the existence and 
characteristics of a critical VIV point for rotational systems.  
 

Methodology 

The present investigation consists an experiment utilising a 
pivoted cylinder rotating as a result of the moment due to the 
buoyancy and weight forces. Inline and transverse motions were 
not restrained. Transverse vibrations were measured by the 
placement of accelerometers at the end of the cylinder. No 
rotation of the cylinder about its longitudinal axis was permitted. 
 
For a translating system, the mass ratio is equal to the magnitude 
of the force ratio (i.e. W/B). Since the rotational equivalents of 
these (i.e. the mass moment of inertia and force moment ratios) 
are not equivalent, the present study considered both parameters.  
 
The force moment ratio, M*, is defined as the ratio of the moment 
about the point of rotation due to the weight force acting on the 
structural mass to that acting on the displaced fluid mass as 
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Note that equation 4 is equivalent to the magnitude of the ratio of 
moments due to the structural weight (i.e. W.rW.sin where rW is 
the distance of the centre of gravity (cog) to the centre of 
rotation) and buoyancy (i.e. B.rB.sin where rB is the distance of 
the centre of buoyancy (cob) to the centre of rotation) forces in 
the plane of transverse oscillations, 
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Figures 2 and 3 illustrate the experimental configuration and act 
as a parameter definition sketch. The angular displacement 
relative to the initial position of the cylinder in the plane of 
transverse oscillation is designated  and α is the angular position 
relative to the horizontal.  
 

 
Figure 2. Experimental apparatus elevation. Buoyancy driven motion of 
the cylinder is rotation in the positive α direction. 

 

 
Figure 3. Experimental apparatus in the plane of transverse oscillations 
(section A-A from figure 2). 

 



Table 1 details the parameter values for the experiment. The 
force moment and mass moment of inertia ratios were 
experimentally controlled by the addition of lump masses at the 
end of the cylinder. 
 
Parameter Value Units 
Fluid Water  
Mass moment of inertia ratio range, I* 0.360-1.110  
Moment ratio range, M* 0.350-0.846  
Cylinder length, L 1507 mm 
Cylinder diameter, D 43 mm 
Angular range of motion about the 
horizontal, α 

-30 to +30 deg 

Structural damping,  0.006  
Cylinder end mean Reynolds number 
range 

2.0 x104 to 
2.7 x104 

 

Table 1. Experimental parameter values. 

 
The approach adopted in the present study to determine the 
location of the critical point was to examine the nature of the 
vortex-induced vibrations at very high reduced velocity (i.e. as 
Ur). The amplitude of the response indicated either resonant 
(i.e. below the critical point) or forced vibration (i.e. above the 
critical point). 
 
The reduced velocity is given by 
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This is equivalent to equation 7 if D  is equal to the arc 
subtended by a chord and radius equal to the diameter and length 
of the cylinder respectively. 
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The natural frequency, fn, is proportional to the square root of the 
angular restoring force coefficient, k. Considering the sum of the 
moments about the cylinder pivot point it may be shown that 
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To test for resonance as Ur, the restoring force coefficient, k, 
must tend to zero. From equation 8 it may be seen that this 
condition is approached as M*1 or α0. Maximum cylinder 
rising velocity is also attained around the latter point, creating an 
angular region about the horizontal plane with very high reduced 
velocity. 
 

Results and Discussion 

The amplitude response of the cylinders over the mass moment 
of inertia and force moment ratios covered in the experiment are 
presented in Figures 5 and 6. Each data point in these plots 
represents the averaged maximum cylinder-end amplitude 
response of between five and ten trials recorded. Two time series 
examples are also provided in figure 4.  
 
It is clear from these figures that a transition from low amplitude 
forced vibration response to high amplitude resonant response 
does occur across the parameter range covered. This indicates 
that a critical point does exist within this range. Figure 4a is an 
example of the nature of the resonant vibrations below the critical 
point and figure 4b an example of the forced vibration response 
above the critical point. 
 
Since the force moment and mass moment of inertia ratios both 
vary throughout the experiment, several trials were conducted 
where one of these parameters was held constant. This was 

achieved through the addition of lump masses at both the end of 
the cylinder and mounted along the cylinder in the wake region. 
This data is represented by the symbol □ in figures 5 and 6. 
When the force moment ratio is constant, there is no change in 
the amplitude response of the cylinder with variation of the mass 
moment of inertia ratio. When the mass moment of inertia ratio is 
constant however, the data aligns consistently with the amplitude 
response data collected with both parameters varying (designated 
by the symbol  in figures 5 and 6). The data collected with one 
parameter held constant clearly indicates that it is the force 
moment ratio that is the governing parameter in determining the 
critical point, not the mass moment of inertia ratio.  

 

  

Figure 4. Cylinder displacement time series at a) M*=0.350 and b) 
M*=0.819. 

 

 

Figure 5. Response amplitude as a function of mass moment of inertia 
ratio (□ constant M*=0.677;  varying M*

 and I*). 

 
The transition from resonant to forced vibration appears to occur 
between approximately M*=0.51 and 0.63. As previously stated, 
if the rotational system behaves in a manner analogous to the 
translational system, this would suggest a critical point 
somewhere in this region.  



 
Relative to previous critical mass ratio experiments (e.g. figure 
1), the transition point is not as clearly defined in the present 
investigation. There are several factors contributing to this, 
including a changing restoring force in the plane of oscillation 
(i.e. section A-A in figure 3) with angular position of the cylinder 
relative to the horizontal.  The cylinder rotational velocity also 
changes with varying force moment ratios and angular position.  
 
Despite an angular range near the horizontal where the restoring 
force is sufficiently small that the natural frequency tends to zero 
(i.e. Ur), maximum vibration amplitude may not be reached 
due to the short time span it takes the cylinder to traverse this 
range. As the critical point is approached, the system may take 
longer to attain maximum amplitude and, as is the general case 
for VIV near the lock-out point, may switch intermittently 
between resonant and forced vibration. This notion is consistent 
with the observation that the greatest variability in maximum 
amplitude between trials was found in this transition region. 
 

 

Figure 6. Response amplitude as a function of force moment ratio (□ 
constant I*=0.436;  varying M*

 and I*). 
 

Conclusions 

A critical point for vortex-induced vibration in a rotational 
system does appear to exist. The evidence collected through the 
experiment presented shows a clear transition from forced to 
resonant vibration at very high reduced velocities. 
 
The governing parameter for the critical point for a pivoted 
cylinder appears to be the force moment ratio, not the mass 
moment of inertia ratio. When considering the corresponding 
translational system, it is perhaps more correct in characterising 
the system dynamics to use the force ratio, rather than the mass 
ratio in light of this result. 
 
The transition from resonant to forced vibration appears to occur 
between approximately M*=0.51 and 0.63, suggesting a critical 
point somewhere in this region. Remarkably, the previously 
reported critical mass ratio values (i.e. approximately 0.54) fall 
within this critical force moment ratio range. 
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